Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 33

Answer

The graph is shown below. Range $[-6,\infty)$.

Work Step by Step

The given function is a quadratic function: $f(x)=x^2+6x+3$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=1,b=6$ and $c=3$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(6)}{2(1)}=-3$. Substitute the value of $x$ into the function. $\Rightarrow f(-3)=(-3)^2+6(-3)+3$ Simplify. $\Rightarrow f(-3)=9-18+3$ $\Rightarrow f(-3)=-6$ The vertex is $(-3,-6)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=x^2+6x+3$ Use quadratic formula, we have $a=1,b=6$ and $c=3$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(6)\pm\sqrt{(6)^2-4(1)(3)}}{2(1)}$ Simplify. $\Rightarrow x=\frac{-6\pm\sqrt{36-12}}{2}$ $\Rightarrow x=\frac{-6\pm\sqrt{24}}{2}$ $\Rightarrow x=\frac{-6\pm2\sqrt6}{2}$ Separate the fractions. $\Rightarrow x=\frac{-6+2\sqrt6}{2}$ or $x= \frac{-6-2\sqrt6}{2}$ Simplify. $\Rightarrow x=-3+\sqrt6$ or $ x=-3-\sqrt6$ The $x-$intercepts are $-3+\sqrt6$ and $-3-\sqrt6$. The parabola passes through $(-3+\sqrt6,0)$ and $(-3-\sqrt6,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=(0)^2+6(0)+3$ Simplify. $\Rightarrow f(0)=3$ The $y-$intercept is $3$. The parabola passes through $(0,3)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=-3$. $A=(-3,-6)$ $B=(-3+\sqrt6,0)$ $C=(-3-\sqrt6,0)$ $D=(0,3)$. From the graph the range of the function is $[-6,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.