Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 23

Answer

The graph is shown below. Range $[-1,\infty)$.

Work Step by Step

The given function is $f(x)=2(x+2)^2-1$ The standard form of the parabola is $f(x)=a(x-h)^2+k$ Compare with the original given function. $a=2,h=-2$ and $k=-1$ Step 1:- Parabola opens. $a>0$, The parabola opens upward. Step 2:- Vertex. The value of $h=-2$ and $k=-1$. The vertex is $(h,k)=(-2,-1)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$. $\Rightarrow 0=2(x+2)^2-1$ Add $1$ to both sides. $\Rightarrow 0+1=2(x+2)^2-1+1$ Simplify. $\Rightarrow 1=2(x+2)^2$ Divide both sides by $2$. $\Rightarrow \frac{1}{2}=\frac{2(x+2)^2}{2}$ Simplify. $\Rightarrow \frac{1}{2}=(x+2)^2$ Apply the square root property. $\Rightarrow x+2=\sqrt{\frac{1}{2}}$ or $x+2=-\sqrt{\frac{1}{2}}$ Subtract $2$ from both sides in each equation. $\Rightarrow x+2-2=\sqrt{\frac{1}{2}}-2$ or $x+2-2=-\sqrt{\frac{1}{2}}-2$ Simplify. $\Rightarrow x=\sqrt{\frac{1}{2}}-2$ or $x=-\sqrt{\frac{1}{2}}-2$ Hence, the $x-$intercepts are $\sqrt{\frac{1}{2}}-2$ and $-\sqrt{\frac{1}{2}}-2$. The parabola passes through $(\sqrt{\frac{1}{2}}-2,0)$ and $(-\sqrt{\frac{1}{2}}-2,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$. $\Rightarrow f(0)=2(0+2)^2-1$ Simplify. $\Rightarrow f(0)=8-1$ Simplify. $\Rightarrow f(0)=7$ Hence, the $y-$intercept is $7$. The parabola passes through $(0,7)$. Step 5:- Graph. Use the points vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=h=-2$. $A=(-2,-1)$ $B=(\sqrt{\frac{1}{2}}-2,0)$ $C=(-\sqrt{\frac{1}{2}}-2,0)$ $D=(0,7)$. From the graph the range of the function is $[-1,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.