Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 25

Answer

The graph is shown below. Range $(-\infty,4]$.

Work Step by Step

Rearrange the given function. $f(x)=-(x-1)^2+4$ The standard form of the parabola is $f(x)=a(x-h)^2+k$ Compare with the original given function. $a=-1,h=1$ and $k=4$ Step 1:- Parabola opens. $a<0$, The parabola opens downward. Step 2:- Vertex. The value of $h=1$ and $k=4$. The vertex is $(h,k)=(1,4)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$. $\Rightarrow 0=-(x-1)^2+4$ Add $(x-1)^2$ to both sides. $\Rightarrow 0+(x-1)^2=-(x-1)^2+4+(x-1)^2$ Simplify. $\Rightarrow (x-1)^2=4$ Apply the square root property. $\Rightarrow x-1=\sqrt{4}$ or $x-1=-\sqrt{4}$ Simplify. $\Rightarrow x-1=2$ or $x-1=-2$ Add $1$ to both sides in each equation. $\Rightarrow x-1+1=2+1$ or $x-1+1=-2+1$ Simplify. $\Rightarrow x=3$ or $x=-1$ Hence, the $x-$intercepts are $3$ and $-1$. The parabola passes through $(3,0)$ and $(-1,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$. $\Rightarrow f(0)=-(0-1)^2+4$ Simplify. $\Rightarrow f(0)=-1+4$ Simplify. $\Rightarrow f(0)=3$ Hence, the $y-$intercept is $3$. The parabola passes through $(0,3)$. Step 5:- Graph. Use the points vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=h=1$. $A=(1,4)$ $B=(3,0)$ $C=(-1,0)$ $D=(0,3)$. From the graph the range of the function is $(-\infty,4]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.