Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 27

Answer

The graph is shown below. Range $[-4,\infty)$.

Work Step by Step

The given function is a quadratic function: $f(x)=x^2-2x-3$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=1,b=-2$ and $c=-3$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(-2)}{2(1)}=1$. Substitute the value of $x$ into the function. $\Rightarrow f(1)=(1)^2-2(1)-3$ Simplify. $\Rightarrow f(1)=1-2-3$ $\Rightarrow f(1)=-4$ The vertex is $(1,-4)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=x^2-2x-3$ Use quadratic formula, we have $a=1,b=-2$ and $c=-3$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(-2)\pm\sqrt{(-2)^2-4(1)(-3)}}{2(1)}$ Simplify. $\Rightarrow x=\frac{2\pm\sqrt{4+12}}{2}$ $\Rightarrow x=\frac{2\pm\sqrt{16}}{2}$ $\Rightarrow x=\frac{2\pm4}{2}$ Separate the radicals. $\Rightarrow x=\frac{2+4}{2}$ or $ \frac{2-4}{2}$ Simplify. $\Rightarrow x=\frac{6}{2}$ or $ x=\frac{-2}{2}$ $\Rightarrow x=3$ or $ x=-1$ The $x-$intercepts are $3$ and $-1$. The parabola passes through $(3,0)$ and $(-1,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=(0)^2-2(0)-3$ Simplify. $\Rightarrow f(0)=-3$ The $y-$intercept is $-3$. The parabola passes through $(0,-3)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=1$. $A=(1,-4)$ $B=(3,0)$ $C=(-1,0)$ $D=(0,-3)$. From the graph the range of the function is $[-4,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.