Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 17

Answer

The graph is shown below. Range $[-1,\infty)$.

Work Step by Step

The given quadratic function is $f(x)=(x-4)^2-1$ The standard form of the parabola is $f(x)=a(x-h)^2+k$ Compare with the original given function. $a=1,h=4$ and $k=-1$ Step 1:- Parabola opens. $a>0$, The parabola opens upward. Step 2:- Vertex. We have $h=4$ and $k=-1$. The vertex is $(h,k)=(4,-1)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$. $\Rightarrow 0=(x-4)^2-1$ Add $1$ to both sides. $\Rightarrow 0+1=(x-4)^2-1+1$ Simplify. $\Rightarrow 1=(x-4)^2$ Apply the square root property. $\Rightarrow x-4=\sqrt{1}$ or $x-4=-\sqrt{1}$ Simplify. $\Rightarrow x-4=1$ or $x-4=-1$ Add $4$ to both sides in each equation. $\Rightarrow x-4+4=1+4$ or $x-4+4=-1+4$ Simplify. $\Rightarrow x=5$ or $x=3$ Hence, the $x-$intercepts are $5$ and $3$. The parabola passes through $(5,0)$ and $(3,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$. $\Rightarrow f(0)=(0-4)^2-1$ Simplify. $\Rightarrow f(0)=16-1$ Simplify. $\Rightarrow f(0)=15$ Hence, the $y-$intercept is $15$. The parabola passes through $(0,15)$. Step 5:- Graph the parabola Use the points: vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=h=4$. $A=(4,-1)$ $B=(5,0)$ $C=(3,0)$ $D=(0,15)$. From the graph we determine the range of the function: $[-1,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.