Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 36

Answer

The graph is shown below. Range $\left[-\frac{13}{3},\infty\right)$.

Work Step by Step

The given function is a quadratic function: $f(x)=3x^2-2x-4$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=3,b=-2$ and $c=-4$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(-2)}{2(3)}=\frac{1}{3}$. Substitute the value of $x$ into the function. $\Rightarrow f(\frac{1}{3})=3(\frac{1}{3})^2-2(\frac{1}{3})-4$ Simplify. $\Rightarrow f(\frac{1}{3})=\frac{1}{3}-\frac{2}{3}-4$ The LCD is $3$. Multiply the numerator and the denominator to form LCD at the denominator. $\Rightarrow f(\frac{1}{3})=\frac{1}{3}-\frac{2}{3}-\frac{12}{3}$ Add numerators because denominators are same. $\Rightarrow f(\frac{1}{3})=\frac{1-2-12}{3}$ $\Rightarrow f(\frac{1}{3})=-\frac{13}{3}$ The vertex is $\left(\frac{1}{3},-\frac{13}{3}\right)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=3x^2-2x-4$ Use quadratic formula, we have $a=3,b=-2$ and $c=-4$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(-2)\pm\sqrt{(-2)^2-4(3)(-4)}}{2(3)}$ Simplify. $\Rightarrow x=\frac{2\pm\sqrt{4+48}}{6}$ $\Rightarrow x=\frac{2\pm\sqrt{52}}{6}$ $\Rightarrow x=\frac{2\pm2\sqrt{13}}{6}$ Separate the fractions. $\Rightarrow x=\frac{2+2\sqrt{13}}{6}$ or $x= \frac{2-2\sqrt{13}}{6}$ Simplify. $\Rightarrow x=\frac{1+\sqrt{13}}{3}$ or $x= \frac{1-\sqrt{13}}{3}$ The $x-$intercepts are $\frac{1+\sqrt{13}}{3}$ and $\frac{1-\sqrt{13}}{3}$. The parabola passes through $\left(\frac{1+\sqrt{13}}{3},0\right)$ and $\left(\frac{1-\sqrt{13}}{3},0\right)$. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=3(0)^2-2(0)-4$ Simplify. $\Rightarrow f(0)=-4$ The $y-$intercept is $-14$. The parabola passes through $(0,-4)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=\frac{1}{3}$. $A=\left(\frac{1}{3},-\frac{13}{3}\right)$ $B=\left(\frac{1+\sqrt{13}}{3},0\right)$ $C=\left(\frac{1-\sqrt{13}}{3},0\right)$ $D=(0,-4)$. From the graph the range of the function is $\left[-\frac{13}{3},\infty\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.