Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 34

Answer

The graph is shown below. Range $[-5,\infty)$.

Work Step by Step

The given function is a quadratic function. $f(x)=x^2+4x-1$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=1,b=4$ and $c=-1$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(4)}{2(1)}=-2$. Substitute the value of $x$ into the function. $\Rightarrow f(-2)=(-2)^2+4(-2)-1$ Simplify. $\Rightarrow f(-2)=4-8-1$ $\Rightarrow f(-2)=-5$ The vertex is $(-2,-5)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=x^2+4x-1$ Use quadratic formula, we have $a=1,b=4$ and $c=-1$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(4)\pm\sqrt{(4)^2-4(1)(-1)}}{2(1)}$ Simplify. $\Rightarrow x=\frac{-4\pm\sqrt{16+4}}{2}$ $\Rightarrow x=\frac{-4\pm\sqrt{20}}{2}$ $\Rightarrow x=\frac{-4\pm2\sqrt5}{2}$ Separate the fractions. $\Rightarrow x=\frac{-4+2\sqrt5}{2}$ or $x= \frac{-4-2\sqrt5}{2}$ Simplify. $\Rightarrow x=-2+\sqrt5$ or $ x=-2-\sqrt5$ The $x-$intercepts are $-2+\sqrt5$ and $-2-\sqrt5$. The parabola passes through $(-2+\sqrt5,0)$ and $(-2-\sqrt5,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=(0)^2+4(0)-1$ Simplify. $\Rightarrow f(0)=-1$ The $y-$intercept is $-1$. The parabola passes through $(0,-1)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=-2$. $A=(-2,-5)$ $B=(-2+\sqrt5,0)$ $C=(-2-\sqrt5,0)$ $D=(0,-1)$. From the graph the range of the function is $[-5,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.