Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 37

Answer

The graph is shown below. Range $(-\infty,-1]$.

Work Step by Step

The given function is a quadratic function: $f(x)=2x-x^2-2$ Rewrite as. $f(x)=-x^2+2x-2$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=-1,b=2$ and $c=-2$. Step 1:- Parabola opens. $a<0$, the parabola open downward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(2)}{2(-1)}=1$. Substitute the value of $x$ into the function. $\Rightarrow f(1)=-(1)^2+2(1)-2$ Simplify. $\Rightarrow f(1)=-1+2-2$ Simplify. $\Rightarrow f(1)=-1$ The vertex is $(1,-1)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=-x^2+2x-2$ Use quadratic formula, we have $a=-1,b=2$ and $c=-2$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(2)\pm\sqrt{(2)^2-4(-1)(-2)}}{2(-1)}$ Simplify. $\Rightarrow x=\frac{-2\pm\sqrt{4-8}}{-2}$ $\Rightarrow x=\frac{-2\pm\sqrt{-4}}{-2}$ The equation has imaginary solutions, there are no $x-$intercepts. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=-(0)^2+2(0)-2$ Simplify. $\Rightarrow f(0)=-2$ The $y-$intercept is $-2$. The parabola passes through $(0,-2)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=1$. $A=(1,-1)$ $B=(0,-2)$. From the graph the range of the function is $(-\infty,-1]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.