Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 97

Answer

$[OH^-] = 2.0 \times 10^{- 6}M $ $pH = 8.30$

Work Step by Step

- Since $F^-$ is the conjugate base of $HF$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 3.5\times 10^{- 4} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 3.5\times 10^{- 4}}$ $K_b = 2.9\times 10^{- 11}$ - We have these concentrations at equilibrium: -$[OH^-] = [HF] = x$ -$[F^-] = [F^-]_{initial} - x = 0.14 - x$ For approximation, we consider: $[F^-] = 0.14M$ - Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HF]}{ [F^-]}$ $Kb = 2.9 \times 10^{- 11}= \frac{x * x}{ 0.14}$ $Kb = 2.9 \times 10^{- 11}= \frac{x^2}{ 0.14}$ $ 4.0 \times 10^{- 12} = x^2$ $x = 2.0 \times 10^{- 6}$ Percent ionization: $\frac{ 2.0 \times 10^{- 6}}{ 0.14} \times 100\% = 0.0014\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HF] = x = 2.0 \times 10^{- 6}M $ $[F^-] \approx 0.14M$ $pOH = -log[OH^-]$ $pOH = -log( 2.0 \times 10^{- 6})$ $pOH = 5.70$ $pH + pOH = 14$ $pH + 5.7 = 14$ $pH = 8.30$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.