Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 106a

Answer

$pH = 8.52$

Work Step by Step

- $K^+$ has insignificant acidity, so, we just have to consider the $CH{O_2}^-$ ionization: 1. Since $CH{O_2}^-$ is the conjugate base of $HCHO_2$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 1.8\times 10^{- 4} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 1.8\times 10^{- 4}}$ $K_b = 5.556\times 10^{- 11}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HCHO_2] = x$ -$[CH{O_2}^-] = [CH{O_2}^-]_{initial} - x = 0.2 - x$ For approximation, we consider: $[CH{O_2}^-] = 0.2M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HCHO_2]}{ [CH{O_2}^-]}$ $Kb = 5.556 \times 10^{- 11}= \frac{x * x}{ 0.2}$ $Kb = 5.556 \times 10^{- 11}= \frac{x^2}{ 0.2}$ $ 1.111 \times 10^{- 11} = x^2$ $x = 3.333 \times 10^{- 6}$ Percent ionization: $\frac{ 3.333 \times 10^{- 6}}{ 0.2} \times 100\% = 0.001667\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HCHO_2] = x = 3.333 \times 10^{- 6}M $ $[CH{O_2}^-] \approx 0.2M$ 4. Calculate the pH value: $pOH = -log[OH^-]$ $pOH = -log( 3.333 \times 10^{- 6})$ $pOH = 5.48$ $pH + pOH = 14$ $pH + 5.48 = 14$ $pH = 8.52$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.