Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 105b

Answer

$pH = 8.87$

Work Step by Step

$Na^+$ has negligible acidity, therefore, we can calculate the pH of a $NaC_2H_3O_2$ solution by calculating the pH of a $C_2H_3{O_2}^-$ solution with the same concentration. 1. Since $C_2H_3{O_2}^-$ is the conjugate base of $HC_2H_3{O_2}$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 1.8\times 10^{- 5} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 1.8\times 10^{- 5}}$ $K_b = 5.556\times 10^{- 10}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [C_2H_3{O_2}^-] = x$ -$[HC_2H_3O_2] = [HC_2H_3O_2]_{initial} - x = 0.1 - x$ For approximation, we consider: $[HC_2H_3O_2] = 0.1M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][C_2H_3{O_2}^-]}{ [HC_2H_3O_2]}$ $Kb = 5.556 \times 10^{- 10}= \frac{x * x}{ 0.1}$ $Kb = 5.556 \times 10^{- 10}= \frac{x^2}{ 0.1}$ $ 5.556 \times 10^{- 11} = x^2$ $x = 7.454 \times 10^{- 6}$ Percent ionization: $\frac{ 7.454 \times 10^{- 6}}{ 0.1} \times 100\% = 0.007454\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [C_2H_3{O_2}^-] = x = 7.454 \times 10^{- 6}M $ $[HC_2H_3O_2] \approx 0.1M$ 4. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 7.454 \times 10^{- 6})$ $pOH = 5.13$ $pH + pOH = 14$ $pH + 5.13 = 14$ $pH = 8.87$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.