Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 111a

Answer

$[H_3O^+] = 0.048M$ $pH = 1.32$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [H_2P{O_4}^-] = x$ -$[H_3PO_4] = [H_3PO_4]_{initial} - x = 0.350 - x$ For approximation, we consider: $[H_3PO_4] = 0.350M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][H_2P{O_4}^-]}{ [H_3PO_4]}$ $Ka = 7.5 \times 10^{- 3}= \frac{x * x}{ 0.35}$ $Ka = 7.5 \times 10^{- 3}= \frac{x^2}{ 0.35}$ $ 2.625 \times 10^{- 3} = x^2$ $x = 5.123 \times 10^{- 2}$ Percent dissociation: $\frac{ 5.123 \times 10^{- 2}}{ 0.35} \times 100\% = 14.64\%$ %dissociation > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 7.5 \times 10^{- 3}= \frac{x^2}{ 0.35- x}$ $ 2.625 \times 10^{- 3} - 7.5 \times 10^{- 3}x = x^2$ $ 2.625 \times 10^{- 3} - 7.5 \times 10^{- 3}x - x^2 = 0$ Bhaskara: $\Delta = (- 7.5 \times 10^{- 3})^2 - 4 * (-1) *( 2.625 \times 10^{- 3})$ $\Delta = 5.625 \times 10^{- 5} + 1.05 \times 10^{- 2} = 1.056 \times 10^{- 2}$ $x_1 = \frac{ - (- 7.5 \times 10^{- 3})+ \sqrt { 1.056 \times 10^{- 2}}}{2*(-1)}$ or $x_2 = \frac{ - (- 7.5 \times 10^{- 3})- \sqrt { 1.056 \times 10^{- 2}}}{2*(-1)}$ $x_1 = - 5.5 \times 10^{- 2} (Negative)$ $x_2 = 4.8 \times 10^{- 2}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 0.048)$ $pH = 1.32$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.