Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 111b

Answer

$[H_3O^+] = 0.12M$ $pH = 0.93$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [HC_2{O_4}^-] = x$ -$[H_2C_2O_4] = [H_2C_2O_4]_{initial} - x = 0.350 - x$ For approximation, we consider: $[H_2C_2O_4] = 0.35M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][HC_2{O_4}^-]}{ [H_2C_2O_4]}$ $Ka = 6.0 \times 10^{- 2}= \frac{x * x}{ 0.35}$ $Ka = 6.0 \times 10^{- 2}= \frac{x^2}{ 0.35}$ $ 2.1 \times 10^{- 2} = x^2$ $x = 1.449 \times 10^{- 1}$ Percent dissociation: $\frac{ 1.449 \times 10^{- 1}}{ 0.35} \times 100\% = 41.4\%$ %dissociation > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 0.06= \frac{x^2}{ 0.35- x}$ $ 0.021 - 0.06x = x^2$ $ 0.021 - 6 \times 10^{- 2}x - x^2 = 0$ Bhaskara: $\Delta = (- 6 \times 10^{- 2})^2 - 4 * (-1) *( 2.1 \times 10^{- 2})$ $\Delta = 3.6 \times 10^{- 3} + 8.4 \times 10^{- 2} = 8.76 \times 10^{- 2}$ $x_1 = \frac{ - (- 6 \times 10^{- 2})+ \sqrt { 8.76 \times 10^{- 2}}}{2*(-1)}$ or $x_2 = \frac{ - (- 6 \times 10^{- 2})- \sqrt { 8.76 \times 10^{- 2}}}{2*(-1)}$ $x_1 = - 1.8 \times 10^{- 1} (Negative)$ $x_2 = 1.2 \times 10^{- 1}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 0.12)$ $pH = 0.93$ - We don't need to consider the second constant dissociation, because it has a very small value compared to the hydronium concentration.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.