Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 748: 106b

Answer

$pH = 5.67$

Work Step by Step

- $I^-$ is a insignificant base, therefore, we just need to consider the $CH_3N{H_3}^+$ ionization. 1. Since $CH_3N{H_3}^+$ is the conjugate acid of $CH_3NH_2$ , we can calculate its kb by using this equation: $K_b * K_a = K_w = 10^{-14}$ $ 4.4\times 10^{- 4} * K_a = 10^{-14}$ $K_a = \frac{10^{-14}}{ 4.4\times 10^{- 4}}$ $K_a = 2.273\times 10^{- 11}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [CH_3NH_2] = x$ -$[CH_3N{H_3}^+] = [CH_3N{H_3}^+]_{initial} - x = 0.2 - x$ For approximation, we consider: $[CH_3N{H_3}^+] = 0.2M$ 3. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][CH_3NH_2]}{ [CH_3N{H_3}^+]}$ $Ka = 2.273 \times 10^{- 11}= \frac{x * x}{ 0.2}$ $Ka = 2.273 \times 10^{- 11}= \frac{x^2}{ 0.2}$ $ 4.545 \times 10^{- 12} = x^2$ $x = 2.132 \times 10^{- 6}$ Percent dissociation: $\frac{ 2.132 \times 10^{- 6}}{ 0.2} \times 100\% = 0.001066\%$ %dissociation < 5% : Right approximation. Therefore: $[H_3O^+] = [CH_3NH_2] = x = 2.132 \times 10^{- 6}M $ And, since 'x' has a very small value (compared to the initial concentration): $[CH_3N{H_3}^+] \approx 0.2M$ 4. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 2.132 \times 10^{- 6})$ $pH = 5.67$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.