Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 8

Answer

$$\frac{1}{3} \ln |3 \sinh x+4|+C $$

Work Step by Step

Given $$ \int \frac{\cosh x}{3 \sinh x+4} d x$$ Let $$ u=3 \sinh x+4 \ \ \ \to du = 3\cosh x dx$$ Then \begin{aligned} \int \frac{\cosh x}{3 \sinh x+4} d x &=\frac{1}{3} \int \frac{1}{u} d u \\ &=\frac{1}{3} \ln |u|+C \\ &=\frac{1}{3} \ln |3 \sinh x+4|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.