Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 30

Answer

$$\frac{1}{2}\left[-\operatorname{csch}^{-1}(81)+\operatorname{csch}^{-1}(1)\right] $$

Work Step by Step

\begin{aligned} \int_{1}^{9} \frac{1}{x \sqrt{x^{4}+1}} d x &=\int_{1}^{9} \frac{1}{2} \cdot \frac{2 x}{x^{2} \sqrt{\left(x^{2}\right)^{2}+1}} d x \\ &=\frac{1}{2}\left[-\operatorname{csch}^{-1}\left(x^{2}\right)\right]_{1}^{9} \\ &=\frac{1}{2}\left[-\operatorname{csch}^{-1}(81)+\operatorname{csch}^{-1}(1)\right] \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.