Answer
$$\frac{-1}{2}\tanh (1-2x)+C$$
Work Step by Step
Given $$\int \operatorname{sech}^{2}(1-2 x) d x$$
Let $$ u=1-2x \ \ \ \to du =-2dx$$
Then
\begin{aligned} \int \operatorname{sech}^{2}(1-2 x) d x&=-\frac{1}{2} \int \operatorname{sech}^{2}(u) d u\\
&=\frac{-1}{2}\tanh u+C\\
&=\frac{-1}{2}\tanh (1-2x)+C
\end{aligned}