Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 5

Answer

$$\frac{-1}{2}\tanh (1-2x)+C$$

Work Step by Step

Given $$\int \operatorname{sech}^{2}(1-2 x) d x$$ Let $$ u=1-2x \ \ \ \to du =-2dx$$ Then \begin{aligned} \int \operatorname{sech}^{2}(1-2 x) d x&=-\frac{1}{2} \int \operatorname{sech}^{2}(u) d u\\ &=\frac{-1}{2}\tanh u+C\\ &=\frac{-1}{2}\tanh (1-2x)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.