Answer
$$\frac{d}{d y} g d(y) =\operatorname{sech} y$$
Work Step by Step
Since $$g d(y)=\tan ^{-1}(\sinh y)$$
Then
\begin{aligned}
\frac{d}{d y} g d(y) &=\frac{d}{d y} \tan ^{-1}(\sinh y) \\
&=\frac{1}{1+\sinh ^{2} y} \cosh y \\
&=\frac{1}{\cosh ^{2} y} \cosh y \\
&=\frac{1}{\cosh y}\\
&=\operatorname{sech} y
\end{aligned}