Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 35

Answer

$$\int \cosh ^{n} x d x=\frac{1}{n} \cosh ^{n-1} x \sinh x+\frac{n-1}{n} \int \cosh ^{n-2} x d x$$

Work Step by Step

Given $$\int \cosh ^{n} x d x $$ Let \begin{align*} u&=\cosh^{n-1}x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=\cosh xdx\\ du&= (n-1)\cosh^{n-2}x \sinh xdx\ \ \ \ \ \ \ \ \ v= \sinh x \end{align*} Then \begin{align*} \int \cosh ^{n} x d x&= \cosh^{n-1}x \sinh x-(n-1)\int \cosh^{n-2}x \sinh^2 xdx\\ &= \cosh^{n-1}x \sinh x-(n-1)\int \cosh^{n-2}x( \cosh^2 x+1)dx\\ (n )\int \cosh ^{n} x d x&= \cosh^{n-1}x \sinh x-(n-1)\int \cosh^{n-2}x dx\\ \end{align*} Hence $$\int \cosh ^{n} x d x=\frac{1}{n} \cosh ^{n-1} x \sinh x+\frac{n-1}{n} \int \cosh ^{n-2} x d x$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.