Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 39

Answer

$$x \tanh ^{-1} x+\frac{1}{2} \ln \left|1-x^{2}\right|+C$$

Work Step by Step

Given $$\int \tanh ^{-1} x d x$$ Let \begin{align*} u&=\tanh ^{-1} x\ \ \ \ \ \ \ \ \ \ \ \ dv=dx\\ du&= \frac{1}{1-x^2} d x\ \ \ \ \ \ \ \ \ \ \ \ dv=x\\ \end{align*} then \begin{aligned} \int \tanh ^{-1} x d x &=x \tanh ^{-1} x-\int \frac{x}{1-x^2} d x\\ &=x \tanh ^{-1} x+\frac{1}{2} \ln \left|1-x^{2}\right|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.