Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 29

Answer

$$\cosh ^{-1} x-\frac{\sqrt{x^{2}-1}}{x}+C$$

Work Step by Step

Given $$ \int \frac{\sqrt{x^{2}-1}}{x^{2}} d x $$ Let $$ x=\cosh t\ \ \to \ dx=\sinh t dt $$ \begin{aligned} \int \frac{\sqrt{x^{2}-1}}{x^{2}} d x &=\int \frac{\sqrt{\cosh ^{2} t-1}}{\cosh ^{2} t} \cdot \sinh t d t \\ &=\int \frac{\sqrt{\sinh ^{2} t}}{\cosh ^{2} t} \cdot \sinh t d t \\ &=\int \frac{\sinh ^{2} t}{\cosh ^{2} t} d t \\ &=\int \tanh ^{2} t d t \\ &=\int\left(1-\operatorname{sech}^{2} t\right) d t \\ &=t-\tanh t +C\\ &= \cosh ^{-1} x-\frac{\sinh t}{\cosh t}+C\\ &=\cosh ^{-1} x-\frac{\sqrt{x^{2}-1}}{x}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.