Answer
$$\frac{1}{2} \tanh(x)+C$$
Work Step by Step
Given $$\int \tanh (x) \operatorname{sech}^2(x) d x$$
Let $$ u=\tanh x \ \ \ \to du = \operatorname{sech}^2(x) dx$$
Then
\begin{aligned} \int \tanh (x) \operatorname{sech}^2(x) d x &=\int ud u \\ &=\frac{1}{2} u^2+C\\ &=\frac{1}{2} \tanh(x)+C \end{aligned}