Answer
$$-\frac{1}{3} \operatorname{sech}(3 x)+C$$
Work Step by Step
Given $$\int \operatorname{sech}^{2}(1-2 x) d x$$
Let $$ u=3x \ \ \ \to du =3dx$$
Then
\begin{aligned} \int \tanh (3 x) \operatorname{sech}(3 x) d x &=\frac{1}{3} \int \tanh (u) \operatorname{sech}(u) d x \\ &=-\frac{1}{3} \operatorname{sech}(u)+C\\ &=-\frac{1}{3} \operatorname{sech}(3 x)+C \end{aligned}