Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 40

Answer

$$\frac{x^{2}}{2} \tanh ^{-1} x+\frac{1}{2} x-\frac{1}{2} \tanh ^{-1} x+C$$

Work Step by Step

Given $$\int x\tanh ^{-1} x d x$$ Let \begin{align*} u&=\tanh ^{-1} x\ \ \ \ \ \ \ \ \ \ \ \ dv=xdx\\ du&= \frac{1}{1-x^2} d x\ \ \ \ \ \ \ \ \ \ \ \ dv=\frac{1}{2}x^2\\ \end{align*} Then \begin{aligned} \int x \tanh ^{-1} x d x=& \frac{x^{2}}{2} \tanh ^{-1} x \cdot-\frac{1}{2} \int \frac{x^{2}}{1-x^{2}} d x \\ &=\frac{x^{2}}{2} \tanh ^{-1} x+\frac{1}{2} \int \frac{-x^{2}}{1-x^{2}} d x \\ &=\frac{x^{2}}{2} \tanh ^{-1} x+\frac{1}{2} \int \frac{1-x^{2}-1}{1-x^{2}} d x \\ &=\frac{x^{2}}{2} \tanh ^{-1} x+\frac{1}{2} \int 1 \, d x-\frac{1}{2} \int \frac{1}{1-x^{2}} d x \\ &=\frac{x^{2}}{2} \tanh ^{-1} x+\frac{1}{2} x-\frac{1}{2} \tanh ^{-1} x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.