Answer
$$\frac{1}{3} \sinh ^{3} x+C $$
Work Step by Step
Given $$\int \sinh ^{2} x \cosh x d x$$
Let $$ u=\sinh x \ \ \ \to du =\cosh xdx$$
Then
\begin{aligned} \int \sinh ^{2} x \cosh x d x &=\int u^{2} d u \\ &=\frac{u^{3}}{3}+C \\ &=\frac{1}{3} \sinh ^{3} x+C \end{aligned}