Answer
$$\tanh (x/2) +C$$
Work Step by Step
Given $$\int \frac{d x}{1+\cosh x}$$
Let $u=\tanh (x/2) $
$$\cosh x=\frac{1+u^{2}}{1-u^{2}}, \quad \sinh x=\frac{2 u}{1-u^{2}}, \quad d x=\frac{2 d u}{1-u^{2}} $$
Then
\begin{aligned}
\int \frac{d x}{1+\cosh x} &=\int \frac{1-u^{2}}{2}\left(\frac{2 d u}{1-u^{2}}\right) \\
&=\int d u \\
&=u+C\\
&=\tanh (x/2) +C
\end{aligned}