Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 80

Answer

$T \approx 2.09894$ seconds.

Work Step by Step

Recall the elliptic integral $E\left( k \right)$ in Example 12: $E\left( k \right) = \dfrac{\pi }{2} + \dfrac{\pi }{2}\mathop \sum \limits_{n = 1}^\infty {\left( {\dfrac{{1\cdot 3\cdot\cdot\cdot{{\left( {2n - 1} \right)}^2}}}{{2\cdot 4\cdot\cdot\cdot\left( {2n} \right)}}} \right)^2}{k^{2n}}$ 1. Evaluate the first five terms of the Maclaurin series for the elliptic integral $E\left( k \right)$: $E\left( k \right) \approx \dfrac{\pi }{2} + \dfrac{\pi }{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^2}{k^2} + \left( {\dfrac{{1\cdot 3}}{{2\cdot 4}}} \right){k^4} + \left( {\dfrac{{1\cdot 3\cdot 5}}{{2\cdot 4\cdot 6}}} \right){k^6} + \left( {\dfrac{{1\cdot 3\cdot 5\cdot 7}}{{2\cdot 4\cdot 6\cdot 8}}} \right){k^8}} \right]$ For $\theta = \dfrac{\pi }{4}$, we have $k = \sin \dfrac{1}{2}\theta = \sin \dfrac{\pi }{8} \approx 0.382683$. So, $E\left( {0.382683} \right) \approx \dfrac{\pi }{2} + \dfrac{\pi }{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^2}{{\left( {0.382683} \right)}^2} + \left( {\dfrac{{1\cdot 3}}{{2\cdot 4}}} \right){{\left( {0.382683} \right)}^4} + \left( {\dfrac{{1\cdot 3\cdot 5}}{{2\cdot 4\cdot 6}}} \right){{\left( {0.382683} \right)}^6} + \left( {\dfrac{{1\cdot 3\cdot 5\cdot 7}}{{2\cdot 4\cdot 6\cdot 8}}} \right){{\left( {0.382683} \right)}^8}} \right]$ $E\left( {0.382683} \right) \approx 1.64268$ 2. Estimate the period $T$ of a $1$-meter pendulum using the first five terms of the Maclaurin series We have $T = 4\sqrt {\dfrac{L}{g}} E\left( k \right)$. For $L=1$, $g=9.8$ and $E\left( {0.382683} \right) \approx 1.64268$, we obtain $T = 4\sqrt {\dfrac{1}{{9.8}}} E\left( {0.382683} \right) \approx 2.09894$ So, $T \approx 2.09894$ seconds.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.