Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 48

Answer

$F\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3\cdot3!}} + \dfrac{{{x^5}}}{{5\cdot5!}} - \dfrac{{{x^7}}}{{7\cdot7!}} + \cdot\cdot\cdot$ $F\left( 1 \right)$ to three decimal places is ${F_2}\left( 1 \right) \approx 0.946111$.

Work Step by Step

From Table 2: $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ So, $\dfrac{{\sin t}}{t} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{t^{2n}}}}{{\left( {2n + 1} \right)!}} = 1 - \dfrac{{{t^2}}}{{3!}} + \dfrac{{{t^4}}}{{5!}} - \dfrac{{{t^6}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $t$ Taking the definite integral on the series above gives $F\left( x \right) = \mathop \smallint \limits_0^x \dfrac{{\sin t}}{t}{\rm{d}}t = \mathop \sum \limits_{n = 0}^\infty \mathop \smallint \limits_0^x \dfrac{{{{\left( { - 1} \right)}^n}{t^{2n}}}}{{\left( {2n + 1} \right)!}}{\rm{d}}t$ $ = \mathop \sum \limits_{n = 0}^\infty \left[ {\dfrac{{{{\left( { - 1} \right)}^n}{t^{2n + 1}}}}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}}} \right]_0^x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}}$ Thus, $F\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3\cdot3!}} + \dfrac{{{x^5}}}{{5\cdot5!}} - \dfrac{{{x^7}}}{{7\cdot7!}} + \cdot\cdot\cdot$ For $x=1$, we have $F\left( 1 \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}}$, where the positive terms are ${b_n} = \dfrac{1}{{\left( {2n + 1} \right)\left( {2n + 1} \right)!}}$. By Eq. (2) in Section 11.4: $\left| {F\left( 1 \right) - {F_n}\left( 1 \right)} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {F\left( 1 \right) - {F_n}\left( 1 \right)} \right| \lt {b_{n + 1}} \lt {10^{ - 3}}$ $\dfrac{1}{{\left( {2n + 3} \right)\left( {2n + 3} \right)!}} \lt {10^{ - 3}}$ $\left( {2n + 3} \right)\left( {2n + 3} \right)! \gt {10^3}$ We evaluate and list some values for $n$ in the following table: $\begin{array}{*{20}{c}} n&{}&{\left( {2n + 3} \right)\left( {2n + 3} \right)!}\\ 1&{}&{600}\\ 2&{}&{35280}\\ 3&{}&{3265920} \end{array}$ Using the results in the table above, we choose $N=2$ such that the approximation of the integral for $x=1$ to three decimal places. We verify the result by computing: ${F_2}\left( 1 \right) \approx 0.946111$, ${\ \ \ \ \ }$ $F\left( 1 \right) \approx 0.946083$ Hence, $F\left( 1 \right)$ to three decimal places is ${F_2}\left( 1 \right) \approx 0.946111$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.