Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 52

Answer

$S = \mathop \smallint \limits_0^1 \dfrac{{{\rm{d}}x}}{{\sqrt {{x^4} + 1} }} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot 4\cdot 6\cdot\cdot\cdot 2n}}\dfrac{1}{{4n + 1}}$ ${S_{125}} \approx 0.926987$

Work Step by Step

Let us expand ${\left( {1 + x} \right)^{ - 1/2}}$ by Theorem 3: ${\left( {1 + x} \right)^a} = 1 + \dfrac{a}{{1!}}x + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot + \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} + \cdot\cdot\cdot$ ${\left( {1 + x} \right)^a} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n}$, converges for $\left| x \right| \lt 1$. Thus, ${\left( {1 + x} \right)^{ - 1/2}} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){x^n}$, converges for $\left| x \right| \lt 1$. Substituting ${x^4}$ for $x$ in the series above gives ${\left( {1 + {x^4}} \right)^{ - 1/2}} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){x^{4n}}$, converges for $\left| {{x^4}} \right| \lt 1$, or $\left| x \right| \lt 1$. Thus, $\dfrac{1}{{\sqrt {{x^4} + 1} }} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){x^{4n}}$. Taking the definite integral on the series gives $\mathop \smallint \limits_0^1 \dfrac{{{\rm{d}}x}}{{\sqrt {{x^4} + 1} }} = \mathop \sum \limits_{n = 0}^\infty \mathop \smallint \limits_0^1 \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){x^{4n}}{\rm{d}}x$ $ = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\left[ {\dfrac{{{x^{4n + 1}}}}{{4n + 1}}} \right]_0^1 = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{1}{{4n + 1}}$ From page 585, we know that $\left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right) = \dfrac{{ - \dfrac{1}{2}\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\cdot\cdot\cdot\left( { - \dfrac{{2n - 1}}{2}} \right)}}{{1\cdot 2\cdot 3\cdot\cdot\cdot n}} = {\left( { - 1} \right)^n}\dfrac{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot 4\cdot 6\cdot\cdot\cdot 2n}}$ Write $S = \mathop \smallint \limits_0^1 \dfrac{{{\rm{d}}x}}{{\sqrt {{x^4} + 1} }} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot 4\cdot 6\cdot\cdot\cdot 2n}}\dfrac{1}{{4n + 1}}$ The alternating series above has positive terms: ${b_n} = \dfrac{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot 4\cdot 6\cdot\cdot\cdot 2n}}\dfrac{1}{{4n + 1}}$. By Eq. (2) in Section 11.4: $\left| {S - {S_n}} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {S - {S_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 4}}$ $\dfrac{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n + 1} \right)}}{{2\cdot 4\cdot 6\cdot\cdot\cdot\left( {2n + 2} \right)}}\dfrac{1}{{4n + 5}} \lt {10^{ - 4}}$ $\dfrac{{2\cdot 4\cdot 6\cdot\cdot\cdot\left( {2n + 2} \right)}}{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n + 1} \right)}}\left( {4n + 5} \right) \gt {10^4}$ We evaluate and list some values for $n$ in the following table: $\begin{array}{*{20}{c}} n&{}&{\dfrac{{2\cdot 4\cdot 6\cdot\cdot\cdot\left( {2n + 2} \right)}}{{1\cdot 3\cdot 5\cdot\cdot\cdot\left( {2n + 1} \right)}}\left( {4n + 5} \right)}\\ {124}&{}&{9938.07}\\ {125}&{}&{10057.3}\\ {126}&{}&{10177.1}\\ {127}&{}&{10297.3} \end{array}$ From the results in the table above, we choose $N=125$ so that the series value is within an error of at most ${10^{ - 4}}$ to the definite integral. We compute the following: ${S_{125}} \approx 0.926987$, ${\ \ \ \ \ }$ $S \approx 0.927037$ It is verified that $\left| {S - {S_{125}}} \right| \approx 0.00005 \lt {10^{ - 4}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.