Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 59

Answer

The series converges to $-1$, that is $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{{{\left( \pi \right)}^{2n}}}}{{\left( {2n} \right)!}} = - 1$

Work Step by Step

From Table 2 we have $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Substituting $x = \pi $, we get $\cos \pi = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{{{\left( \pi \right)}^{2n}}}}{{\left( {2n} \right)!}}$ Since $\cos \pi = - 1$, so the series converges to $-1$, that is $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{{{\left( \pi \right)}^{2n}}}}{{\left( {2n} \right)!}} = - 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.