Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 67

Answer

$$1-5x+\sin(5x).$$

Work Step by Step

Since we have$$ 1-\frac{5^{3} x^{3}}{3 !}+\frac{5^{5} x^{5}}{5 !}-\frac{5^{7} x^{7}}{7 !}+\cdots\\ = 1-\frac{(5x)^{3}}{3 !}+\frac{(5x)^{5}}{5 !}-\frac{(5x)^{7}}{7 !}+\cdots\\ =1-5x+5x-\frac{(5x)^{3}}{3 !}+\frac{(5x)^{5}}{5 !}-\frac{(5x)^{7}}{7 !}+\cdots $$ Then by using Table 2, we see that this is a Maclaurin series of the function $$1-5x+\sin(5x).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.