Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 76

Answer

${f^{\left( 8 \right)}}\left( 0 \right) = - 1575$

Work Step by Step

Write $f\left( x \right) = \sqrt {1 - {x^2}} = {\left( {1 + \left( { - {x^2}} \right)} \right)^{1/2}}$. By Theorem 3: ${\left( {1 + x} \right)^a} = 1 + \dfrac{a}{{1!}}x + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot + \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} + \cdot\cdot\cdot$ converges for $\left| x \right| \lt 1$. Setting $a = \dfrac{1}{2}$ and substituting $ - {x^2}$ for $x$ in the series above gives $f\left( x \right) = \sqrt {1 - {x^2}} = {\left( {1 + \left( { - {x^2}} \right)} \right)^{1/2}}$ $ = 1 - \dfrac{{\dfrac{1}{2}}}{{1!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)}}{{2!}}{x^4} - \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{3!}}{x^6} + \cdot\cdot\cdot + {\left( { - 1} \right)^n}\left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){x^{2n}} + \cdot\cdot\cdot$ converges for $\left| { - {x^2}} \right| \lt 1$. Thus, $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){x^{2n}}$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$. According to Maclaurin series: $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$. We set $n=4$ in the series $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){x^{2n}}$, such that the coefficient of ${x^8}$ be ${\left( { - 1} \right)^4}\left( {\begin{array}{*{20}{c}} {1/2}\\ 4 \end{array}} \right)$. Thus, $\dfrac{{{f^{\left( 8 \right)}}\left( 0 \right)}}{{8!}} = {\left( { - 1} \right)^4}\left( {\begin{array}{*{20}{c}} {1/2}\\ 4 \end{array}} \right)$ ${f^{\left( 8 \right)}}\left( 0 \right) = {\left( { - 1} \right)^4}\left( {\begin{array}{*{20}{c}} {1/2}\\ 4 \end{array}} \right)8! = \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)}}{{4!}}8! = - \dfrac{{15}}{{16}}\left( {5\cdot 6\cdot 7\cdot 8} \right)$ So, ${f^{\left( 8 \right)}}\left( 0 \right) = - 1575$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.