Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 79

Answer

(a) Please see the figure attached. The graphs suggest that the interval of convergence of the Taylor series for $f$ is $ - 1 \lt x \lt 1$. (b) The Taylor expansion for $f$ is valid at $x=1$ and at $x=-1$. Hence, the interval of convergence of the Taylor series for $f\left( x \right) = \sqrt {1 + x} $ is $ - 1 \le x \le 1$.

Work Step by Step

(a) Write $f\left( x \right) = \sqrt {1 + x} = {\left( {1 + x} \right)^{1/2}}$. By Theorem 3: ${\left( {1 + x} \right)^a} = 1 + \dfrac{a}{{1!}}x + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot + \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} + \cdot\cdot\cdot = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n}$ converges for $\left| x \right| \lt 1$. Thus, $f\left( x \right) = \sqrt {1 + x} = {\left( {1 + x} \right)^{1/2}} = 1 + \dfrac{1}{2}x + \dfrac{{\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)}}{{2!}}{x^2} + \dfrac{{\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{3!}}{x^3} + \dfrac{{\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)}}{{4!}}{x^4} + \cdot\cdot\cdot = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){x^n}$ We list in the table below the the first five Taylor polynomials for $f$: $\begin{array}{*{20}{c}} N&{}&{\mathop \sum \limits_{n = 0}^N \left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){x^n}}\\ 0&{}&1\\ 1&{}&{1 + \dfrac{x}{2}}\\ 2&{}&{1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8}}\\ 3&{}&{1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}}}\\ 4&{}&{1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} - \dfrac{{5{x^4}}}{{128}}} \end{array}$ Using a computer algebra system we plot the graph of $f\left( x \right) = \sqrt {1 + x} $ (the red curve) with the graphs of the first five Taylor polynomials for $f$ (the dashed curves), as is shown in the figure attached. The graphs suggest that the interval of convergence of the Taylor series for $f$ is $ - 1 \lt x \lt 1$. In part (b) below, we investigate the endpoints: $x=1$ and $x=-1$, numerically. (b) We compute some values of the Taylor polynomials for $f$ and list them in the following tables: 1. For $x=1$ $\begin{array}{*{20}{c}} N&{}&{\mathop \sum \limits_{n = 0}^N \left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right)}\\ {10}&{}&{1.40993}\\ {20}&{}&{1.41267}\\ {50}&{}&{1.41382}\\ {100}&{}&{1.41407}\\ {1000}&{}&{1.41421} \end{array}$ The results show that the series converges to $1.41421$ as $N \to \infty $. Since $f\left( 1 \right) = \sqrt 2 \approx 1.4142$, we conclude that the Taylor expansion for $f$ is valid at $x=1$. 2. For $x=-1$ $\begin{array}{*{20}{c}} N&{}&{\mathop \sum \limits_{n = 0}^N \left( {\begin{array}{*{20}{c}} {1/2}\\ n \end{array}} \right){{\left( { - 1} \right)}^n}}\\ {10}&{}&{0.176197}\\ {50}&{}&{0.0795892}\\ {100}&{}&{0.0563485}\\ {1000}&{}&{0.017839}\\ {10000}&{}&{0.00564183} \end{array}$ The results show that the series converges to $0$ as $N \to \infty $. Since $f\left( { - 1} \right) = 0$, we conclude that the Taylor expansion for $f$ is valid at $x=-1$. Hence, the interval of convergence of the Taylor series for $f\left( x \right) = \sqrt {1 + x} $ is $ - 1 \le x \le 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.