Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 57

Answer

$\frac{1}{{1 + 2x}}$

Work Step by Step

Write $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{2^n}{x^n} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {2x} \right)^n}$. Let $t=2x$. So, $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{2^n}{x^n} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{t^n}$ From Table 2, we see that $\dfrac{1}{{1 + t}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{t^n}$, ${\ \ \ }$ valid for $\left| t \right| \lt 1$ Therefore, the function $\dfrac{1}{{1 + 2x}}$ has the Maclaurin series $\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{2^n}{x^n}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.