Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 70

Answer

$f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left[ {{{\left( { - 1} \right)}^{n + 1}}{{\left( {\dfrac{2}{3}} \right)}^{n + 1}} + {{\left( { - 1} \right)}^n}} \right]{\left( {x - 2} \right)^n}$, valid for $\left| {x - 2} \right| \lt 1$.

Work Step by Step

Recall the identity in Exercise 69: $f\left( x \right) = \dfrac{2}{{1 - 2x}} - \dfrac{1}{{1 - x}}$ We can rewrite this as $f\left( x \right) = \dfrac{2}{{ - 3 - 2\left( {x - 2} \right)}} - \dfrac{1}{{ - 1 - \left( {x - 2} \right)}}$ $f\left( x \right) = \dfrac{2}{{ - 3\left( {1 + \dfrac{{x - 2}}{{3/2}}} \right)}} + \dfrac{1}{{\left( {1 + \left( {x - 2} \right)} \right)}}$ From Table 2, we have (1) ${\ \ \ \ \ }$ $\dfrac{1}{{1 + x}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{x^n} = 1 - x + {x^2} - {x^3} + {x^4} - \cdot\cdot\cdot$, converges for $\left| x \right| \lt 1$. Substituting $\dfrac{{x - 2}}{{3/2}}$ for $x$ in the expansion (1) gives $\dfrac{1}{{1 + \dfrac{{x - 2}}{{3/2}}}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {\dfrac{{x - 2}}{{3/2}}} \right)^n}$, ${\ \ \ }$ converges for $\left| {\dfrac{{x - 2}}{{3/2}}} \right| \lt 1$ or $\left| {x - 2} \right| \lt \dfrac{3}{2}$ So, $\dfrac{1}{{1 + \dfrac{{x - 2}}{{3/2}}}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {\dfrac{2}{3}} \right)^n}{\left( {x - 2} \right)^n}$ Substituting $\left( {x - 2} \right)$ for $x$ in the expansion (1) gives $\dfrac{1}{{\left( {1 + \left( {x - 2} \right)} \right)}} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {x - 2} \right)^n}$, ${\ \ \ }$ converges for $\left| {x - 2} \right| \lt 1$ Therefore, $f\left( x \right) = \dfrac{2}{{ - 3\left( {1 + \dfrac{{x - 2}}{{3/2}}} \right)}} + \dfrac{1}{{\left( {1 + \left( {x - 2} \right)} \right)}}$ $f\left( x \right) = - \dfrac{2}{3}\mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {\dfrac{2}{3}} \right)^n}{\left( {x - 2} \right)^n} + \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {x - 2} \right)^n}$ $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^{n + 1}}{\left( {\dfrac{2}{3}} \right)^{n + 1}}{\left( {x - 2} \right)^n} + \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}{\left( {x - 2} \right)^n}$ The two series together is valid for $\left| {x - 2} \right| \lt 1$. Thus, $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left[ {{{\left( { - 1} \right)}^{n + 1}}{{\left( {\dfrac{2}{3}} \right)}^{n + 1}} + {{\left( { - 1} \right)}^n}} \right]{\left( {x - 2} \right)^n}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.