Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 56

Answer

$\mathop \smallint \limits_0^x \dfrac{{{\rm{d}}t}}{{\sqrt {1 - {t^4}} }} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{{{{\left( { - 1} \right)}^n}{x^{4n + 1}}}}{{4n + 1}}$

Work Step by Step

Let us expand ${\left( {1 + t} \right)^{ - 1/2}}$ by Theorem 3: ${\left( {1 + t} \right)^a} = 1 + \dfrac{a}{{1!}}t + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{t^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{t^3} + \cdot\cdot\cdot + \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){t^n} + \cdot\cdot\cdot$ converges for $\left| t \right| \lt 1$. ${\left( {1 + t} \right)^a} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){t^n}$ ${\left( {1 + t} \right)^{ - 1/2}} = \mathop \sum \limits_{n = 0}^\infty\left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){t^n}$ converges for $\left| t \right| \lt 1$. Substituting $ - {t^4}$ for $t$ in the series above gives ${\left( {1 - {t^4}} \right)^{ - 1/2}} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}{t^{4n}}$ converges for $\left| { - {t^4}} \right| \lt 1$, or $\left| t \right| \lt 1$. Thus, $\dfrac{1}{{\sqrt {1 - {t^4}} }} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}{t^{4n}}$. Taking the definite integral on the series gives $\mathop \smallint \limits_0^x \dfrac{{{\rm{d}}t}}{{\sqrt {1 - {t^4}} }} = \mathop \sum \limits_{n = 0}^\infty \mathop \smallint \limits_0^x \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}{t^{4n}}{\rm{d}}t$ $ = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}\left[ {\dfrac{{{t^{4n + 1}}}}{{4n + 1}}} \right]_0^x = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{{{{\left( { - 1} \right)}^n}{x^{4n + 1}}}}{{4n + 1}}$ So, $\mathop \smallint \limits_0^x \dfrac{{{\rm{d}}t}}{{\sqrt {1 - {t^4}} }} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{{{{\left( { - 1} \right)}^n}{x^{4n + 1}}}}{{4n + 1}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.