Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 61

Answer

We prove that $f\left( x \right) = \sin \left( {\dfrac{x}{2}} \right) + \cos \left( {\dfrac{x}{3}} \right)$ is represented by its Maclaurin series for all $x$.

Work Step by Step

From Table 2 we have $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ Therefore, $\sin \left( {\dfrac{x}{2}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{{\left( {\dfrac{x}{2}} \right)}^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{g^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n + 1} \right)!}}{x^{2n + 1}}$, ${\ \ \ }$ where ${g^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{2^{2n + 1}}}}$ $\cos \left( {\dfrac{x}{3}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{{\left( {\dfrac{x}{3}} \right)}^{2n}}}}{{\left( {2n} \right)!}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{h^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n} \right)!}}{x^{2n}}$, ${\ \ \ }$ where ${h^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{3^{2n}}}}$ So, $f\left( x \right) = \sin \left( {\dfrac{x}{2}} \right) + \cos \left( {\dfrac{x}{3}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{g^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n + 1} \right)!}}{x^{2n + 1}} + \mathop \sum \limits_{n = 0}^\infty \dfrac{{{h^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n} \right)!}}{x^{2n}}$ Since $|{g^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{2^{2n + 1}}}}| \le 1$ and $|{h^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{3^{2n}}}}| \le 1$, we apply Theorem 2 by choosing $K=1$ such that $|{g^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{2^{2n + 1}}}}| \le K$ ${\ \ \ }$ and ${\ \ \ }$ $|{h^{\left( n \right)}}\left( 0 \right) = \dfrac{{{{\left( { - 1} \right)}^n}}}{{{3^{2n}}}}| \le K$, for any value of $x$. Therefore, By Theorem 2: $\sin \left( {\dfrac{x}{2}} \right)$ is represented by the Maclaurin series $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{g^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n + 1} \right)!}}{x^{2n + 1}}$, and $\cos \left( {\dfrac{x}{3}} \right)$ is represented by the Maclaurin series $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{h^{\left( n \right)}}\left( 0 \right)}}{{\left( {2n} \right)!}}{x^{2n}}$. Hence, $f\left( x \right) = \sin \left( {\dfrac{x}{2}} \right) + \cos \left( {\dfrac{x}{3}} \right)$ is represented by its Maclaurin series for all $x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.