Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 55

Answer

$\mathop \smallint \limits_0^x \ln \left( {1 + {t^2}} \right){\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^{2n + 1}}}}{{n\left( {2n + 1} \right)}}$

Work Step by Step

From Table 2: $\ln \left( {1 + t} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{t^n}}}{{n!}} = t - \dfrac{{{t^2}}}{2} + \dfrac{{{t^3}}}{3} - \dfrac{{{t^4}}}{4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| t \right| \lt 1$ and $t=1$. Substituting ${t^2}$ for $t$ in the series above gives $\ln \left( {1 + {t^2}} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{t^{2n}}}}{n} = {t^2} - \dfrac{{{t^4}}}{2} + \dfrac{{{t^6}}}{3} - \dfrac{{{t^8}}}{4} + \cdot\cdot\cdot$ Taking the definite integral on the series gives $\mathop \smallint \limits_0^x \ln \left( {1 + {t^2}} \right){\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \mathop \smallint \limits_0^x \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{t^{2n}}}}{n}{\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \left[ {\dfrac{{{{\left( { - 1} \right)}^{n - 1}}{t^{2n + 1}}}}{{n\left( {2n + 1} \right)}}} \right]_0^x$ So, $\mathop \smallint \limits_0^x \ln \left( {1 + {t^2}} \right){\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^{2n + 1}}}}{{n\left( {2n + 1} \right)}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.