Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 58

Answer

The function: $\dfrac{1}{x}$ The expansion is valid for $\left| {x - 3} \right| \lt 3$.

Work Step by Step

Write $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k} = \dfrac{1}{3}\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{\left( {\dfrac{{x - 3}}{3}} \right)^k}$ $ = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}\dfrac{1}{3}{\left( {\dfrac{x}{3} - 1} \right)^k} = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{\left( { - 1} \right)^k}\dfrac{1}{3}{\left( {1 - \dfrac{x}{3}} \right)^k}$ Since ${\left( { - 1} \right)^k}{\left( { - 1} \right)^k} = {\left( { - 1} \right)^{2k}} = 1$, we have a simplified series $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k} = \mathop \sum \limits_{k = 0}^\infty \dfrac{1}{3}{\left( {1 - \dfrac{x}{3}} \right)^k}$ Let $t = 1 - \dfrac{x}{3}$, so $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k} = \dfrac{1}{3}\mathop \sum \limits_{k = 0}^\infty {t^k}$ From Table 2, we know that $\mathop \sum \limits_{k = 0}^\infty {t^k} = \dfrac{1}{{1 - t}}$, valid for $\left| t \right| \lt 1$. Therefore, $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k} = \dfrac{1}{3}\dfrac{1}{{1 - t}}$ Substituting $t = 1 - \dfrac{x}{3}$ into the right-hand side gives $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k} = \dfrac{1}{3}\dfrac{1}{{1 - \left( {1 - \dfrac{x}{3}} \right)}} = \dfrac{1}{x}$ Therefore, the function $\dfrac{1}{x}$ has Maclaurin series $\mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{3^{k + 1}}}}{\left( {x - 3} \right)^k}$. Since $\left| t \right| \lt 1$, so $\left| {1 - \dfrac{x}{3}} \right| \lt 1$. Thus, $\left| {3 - x} \right| \lt 3$ ${\ \ \ }$ or ${\ \ \ }$ $\left| {x - 3} \right| \lt 3$ Thus, the expansion is valid for $\left| {x - 3} \right| \lt 3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.