Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 73

Answer

$f\left( x \right) = \cos \left( {{x^3}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{6n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^6}}}{{2!}} + \dfrac{{{x^{12}}}}{{4!}} - \dfrac{{{x^{18}}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ ${f^{\left( 6 \right)}}\left( 0 \right) = - 360$

Work Step by Step

From Table 2 we have $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ Substituting ${x^3}$ for $x$ in the series above we get $f\left( x \right) = \cos \left( {{x^3}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{6n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^6}}}{{2!}} + \dfrac{{{x^{12}}}}{{4!}} - \dfrac{{{x^{18}}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ According to Maclaurin series: $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$. Comparing with the expansion above, we get $\dfrac{{{f^{\left( 6 \right)}}\left( 0 \right)}}{{6!}} = - \dfrac{1}{{2!}}$ So, ${f^{\left( 6 \right)}}\left( 0 \right) = - \dfrac{{6!}}{{2!}} = - 3\cdot4\cdot5\cdot6 = - 360$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.