Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 49

Answer

$S = \mathop \smallint \limits_0^1 \cos \left( {{x^2}} \right){\rm{d}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{\left( {4n + 1} \right)\left( {2n} \right)!}}$ ${S_3} \approx 0.904523$

Work Step by Step

From Table 2: $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Substituting ${x^2}$ for $x$ in the series above gives $\cos \left( {{x^2}} \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{4n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^4}}}{{2!}} + \dfrac{{{x^8}}}{{4!}} - \dfrac{{{x^{12}}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Taking the definite integral on the series gives $\mathop \smallint \limits_0^1 \cos \left( {{x^2}} \right){\rm{d}}x = \mathop \sum \limits_{n = 0}^\infty \mathop \smallint \limits_0^1 \dfrac{{{{\left( { - 1} \right)}^n}{x^{4n}}}}{{\left( {2n} \right)!}}{\rm{d}}x$ $ = \mathop \sum \limits_{n = 0}^\infty \left[ {\dfrac{{{{\left( { - 1} \right)}^n}{x^{4n + 1}}}}{{\left( {4n + 1} \right)\left( {2n} \right)!}}} \right]_0^1 = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{\left( {4n + 1} \right)\left( {2n} \right)!}}$ Write $S = \mathop \smallint \limits_0^1 \cos \left( {{x^2}} \right){\rm{d}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{\left( {4n + 1} \right)\left( {2n} \right)!}}$. The alternating series above has positive terms: ${b_n} = \dfrac{1}{{\left( {4n + 1} \right)\left( {2n} \right)!}}$. By Eq. (2) in Section 11.4: $\left| {S - {S_n}} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {S - {S_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 4}}$ $\dfrac{1}{{\left( {4n + 5} \right)\left( {2n + 2} \right)!}} \lt {10^{ - 4}}$ $\left( {4n + 5} \right)\left( {2n + 2} \right)! \gt {10^4}$ We evaluate and list some values for $n$ in the following table: $\begin{array}{*{20}{c}} n&{}&{\left( {4n + 5} \right)\left( {2n + 2} \right)!}\\ 1&{}&{216}\\ 2&{}&{9360}\\ 3&{}&{685440}\\ 4&{}&{76204800} \end{array}$ From the results in the table above, we choose $N=3$ so that the series value is within an error of at most ${10^{ - 4}}$ to the definite integral. We compute the following: ${S_3} \approx 0.904523$, ${\ \ \ \ \ }$ $S \approx 0.904524$ It is verified that $\left| {S - {S_3}} \right| \approx 0.00000145 \lt {10^{ - 4}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.