Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 589: 69

Answer

$f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {{2^{n + 1}} - 1} \right){x^n}$

Work Step by Step

From Table 2, we have $\dfrac{1}{{1 - x}} = \mathop \sum \limits_{n = 0}^\infty {x^n} = 1 + x + {x^2} + {x^3} + {x^4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$ Substituting $2x$ for $x$ in the series above gives $\dfrac{1}{{1 - 2x}} = \mathop \sum \limits_{n = 0}^\infty {2^n}{x^n}$, ${\ \ \ }$ converges for $\left| {2x} \right| \lt 1$ or $\left| x \right| \lt \dfrac{1}{2}$ Thus, $f\left( x \right) = \dfrac{2}{{1 - 2x}} - \dfrac{1}{{1 - x}} = 2\mathop \sum \limits_{n = 0}^\infty {2^n}{x^n} - \mathop \sum \limits_{n = 0}^\infty {x^n}$ The two series together converges for $\left| x \right| \lt \dfrac{1}{2}$. Therefore, $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {{2^{n + 1}} - 1} \right){x^n}$, ${\ \ \ }$ converges for $\left| x \right| \lt \dfrac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.