Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 57

Answer

$${f_{avg}} = \frac{2}{5},{\text{ }}x = \frac{{25}}{4}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{{\sqrt x }},{\text{ }}\left[ {4,9} \right] \cr & {\text{Calculate the average value}} \cr & {f_{avg}} = \frac{1}{{b - a}}\int_a^b {f\left( x \right)} dx \cr & {f_{avg}} = \frac{1}{{9 - 4}}\int_4^9 {\frac{1}{{\sqrt x }}} dx \cr & {f_{avg}} = \frac{1}{5}\int_4^9 {{x^{ - 1/2}}} dx \cr & {f_{avg}} = \frac{1}{5}\left[ {2\sqrt x } \right]_4^9 \cr & {f_{avg}} = \frac{2}{5}\left[ {\sqrt 9 - \sqrt 4 } \right] \cr & {f_{avg}} = \frac{2}{5} \cr & \cr & {\text{Let }}{f_{avg}} = f\left( x \right) \cr & \frac{2}{5} = \frac{1}{{\sqrt x }} \cr & \sqrt x = \frac{5}{2} \cr & x = {\left( {\frac{5}{2}} \right)^2} \cr & x = \frac{{25}}{4} \cr & \cr & {f_{avg}} = \frac{2}{5},{\text{ }}x = \frac{{25}}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.