Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 73

Answer

$$y = - \frac{1}{3}{\left( {9 - {x^2}} \right)^{3/2}} + 5$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = x\sqrt {9 - {x^2}} \cr & {\text{Separate the variables}} \cr & dy = x\sqrt {9 - {x^2}} dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {x\sqrt {9 - {x^2}} } dx \cr & y = - \frac{1}{2}\int {\left( { - 2x} \right)\sqrt {9 - {x^2}} } dx \cr & y = - \frac{1}{2}\left[ {\frac{{{{\left( {9 - {x^2}} \right)}^{3/2}}}}{{3/2}}} \right] + C \cr & y = - \frac{1}{3}{\left( {9 - {x^2}} \right)^{3/2}} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0, - 4} \right) \cr & - 4 = - \frac{1}{3}{\left( {9 - {0^2}} \right)^{3/2}} + C \cr & - 4 = - 9 + C \cr & C = 5 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = - \frac{1}{3}{\left( {9 - {x^2}} \right)^{3/2}} + 5 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.