Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 88

Answer

$$\eqalign{ & {\text{Trapezoidal Rule}} \approx 0.1719 \cr & {\text{Simpson's Rule}} \approx 0.1661 \cr & {\text{Graphing utility}} \approx 0.1657 \cr} $$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \cr & {\text{For }}n = 4,{\text{ }}\Delta x = \frac{{b - a}}{n} = \frac{{1 - 0}}{4} = \frac{1}{4},{\text{ then,}} \cr & {x_0} = 0,{\text{ }}{x_1} = \frac{1}{4},{\text{ }}{x_2} = \frac{1}{2},{\text{ }}{x_3} = \frac{3}{4},{\text{ }}{x_4} = 1 \cr & \cr & {\text{*Using the trapezoidal Rule }}\left( {{\text{THEOREM 4}}{\text{.17}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{2n}}\left[ {f\left( {{x_0}} \right) + 2f\left( {{x_1}} \right) + \cdots 2f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx \frac{1}{{2\left( 4 \right)}}\left[ {f\left( 0 \right) + 2f\left( {\frac{1}{4}} \right) + 2f\left( {\frac{1}{2}} \right)} \right] \cr & + \frac{1}{{2\left( 4 \right)}}\left[ {2f\left( {\frac{3}{4}} \right) + f\left( 1 \right)} \right] \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx \frac{1}{8}\left[ {0 + \frac{{2{{\left( {1/4} \right)}^{3/2}}}}{{3 - {{\left( {1/4} \right)}^2}}} + \frac{{2{{\left( {1/2} \right)}^{3/2}}}}{{3 - {{\left( {1/2} \right)}^2}}}} \right] \cr & {\text{ }} + \frac{1}{8}\left[ {\frac{{2{{\left( {3/4} \right)}^{3/2}}}}{{3 - {{\left( {3/4} \right)}^2}}} + \frac{{{{\left( 1 \right)}^{3/2}}}}{{3 - {{\left( 1 \right)}^2}}}} \right] \cr & {\text{Simplifying}} \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx 0.1719 \cr & \cr & {\text{*Using Simpson's Rule }}\left( {{\text{THEOREM 4}}{\text{.19}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{3n}}\left[ {f\left( {{x_0}} \right) + 4f\left( {{x_1}} \right) + 2f\left( {{x_2}} \right) + 4f\left( {{x_3}} \right) + \cdots } \right. \cr & \left. { + 4f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx \frac{1}{{3\left( 4 \right)}}\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{4}} \right) + 2f\left( {\frac{1}{2}} \right)} \right] \cr & + \frac{1}{{3\left( 4 \right)}}\left[ {4f\left( {\frac{3}{4}} \right) + f\left( 1 \right)} \right] \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx \frac{1}{{12}}\left[ {0 + \frac{{4{{\left( {1/4} \right)}^{3/2}}}}{{3 - {{\left( {1/4} \right)}^2}}} + \frac{{2{{\left( {1/2} \right)}^{3/2}}}}{{3 - {{\left( {1/2} \right)}^2}}}} \right] \cr & {\text{ }} + \frac{1}{{12}}\left[ {\frac{{4{{\left( {3/4} \right)}^{3/2}}}}{{3 - {{\left( {3/4} \right)}^2}}} + \frac{{{{\left( 1 \right)}^{3/2}}}}{{3 - {{\left( 1 \right)}^2}}}} \right] \cr & {\text{Simplifying}} \cr & \int_2^3 {\frac{2}{{1 + {x^2}}}} dx \approx 0.1661 \cr & \cr & {\text{Using a graphing utility we obtain}} \cr & \int_0^1 {\frac{{{x^{3/2}}}}{{3 - {x^2}}}} dx \approx 0.1657 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.