Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 82

Answer

$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin{2x}\ dx = 0$

Work Step by Step

To evaluate the integral $\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin{2x}\ dx$ we use the trigonometric identity $\sin{2x} = 2\sin{x}\cos{x}$ and let $u = \sin{x}$. Then we obtain $u = \sin{x} \longrightarrow du = \cos{x}\ dx$ Before substituting, determine the new upper and lower limits of integration Lower limit: When $x = -\dfrac{\pi}{4}$, $u = \sin{\Big(-\dfrac{\pi}{4}\Big)} = -\dfrac{\sqrt{2}}{2}$ Upper limit: When $x = \dfrac{\pi}{4}$, $u = \sin{\Big(\dfrac{\pi}{4}\Big)} = \dfrac{\sqrt{2}}{2}$ $\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin{2x}\ dx = \displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}2\sin{x}\cos{x}\ dx = \displaystyle 2\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}u\ du = 2\dfrac{u^2}{2}\Bigg\vert_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} = u^2\Bigg\vert_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}= \bigg(\dfrac{\sqrt{2}}{2}\bigg)^2 - \bigg(-\dfrac{\sqrt{2}}{2}\bigg)^2 = \dfrac{2}{4} - \dfrac{2}{4} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.