Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 75

Answer

$\displaystyle \int_{0}^{1} (3x+1)^5dx = \dfrac{455}{2} = 227.5$

Work Step by Step

$\displaystyle \int_{0}^{1} (3x+1)^5dx$ To evaluate this integral let $u = 3x+1 \longrightarrow du = 3dx \longrightarrow \dfrac{du}{3} = dx$ Lower limit: When $x = 0$, $u = 3\times0 + 1 = 1$ Upper limit: When $x = 1$, $u = 3\times1 + 1 = 4$ Now, we substitute to obtain $\displaystyle \int_{0}^{1} (3x+1)^5dx = \displaystyle \int_{1}^{4} u^5\dfrac{du}{3} = \displaystyle \dfrac{1}{3}\int_{1}^{4} u^5du = \dfrac{1}{3} \bigg[\dfrac{u^6}{6}\bigg] \Bigg\rvert_{1}^{4} = \dfrac{1}{3} \bigg[\dfrac{4^6}{6} - \dfrac{1^6}{6}\bigg] = \dfrac{1}{3} \bigg[\dfrac{4096}{6} - \dfrac{1}{6}\bigg] = \dfrac{1}{3} \bigg[\dfrac{1365}{2}\bigg] = \dfrac{455}{2} = 227.5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.