Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 76

Answer

$\displaystyle \int_{0}^{1}x^2(x^3-2)^3dx= -\dfrac{5}{4}$

Work Step by Step

To evaluate the integral $\displaystyle \int_{0}^{1}x^2(x^3-2)^3dx$, let $u = x^3-2$. Then we obtain $u = x^3-2 \longrightarrow du = 3x^2dx \longrightarrow \dfrac{du}{3} = x^2dx$ Before substituting, determine the new upper and lower limits of integration Lower limit: When $x = 0$, $u = 0^3-2 = -2$ Upper limit: When $x = 1$, $u = 1^3-2 = -1$ $\displaystyle \int_{0}^{1}x^2(x^3-2)^3dx = \displaystyle \int_{0}^{1}(x^3-2)^3(x^2dx) = \displaystyle \int_{-2}^{-1}u^3\dfrac{du}{3} = \displaystyle \dfrac{1}{3}\int_{-2}^{-1}u^3du = \dfrac{1}{3}\dfrac{u^4}{4} \Bigg\vert_{-2}^{-1} = \dfrac{1}{3} \bigg[ \dfrac{(-1)^4}{4} - \dfrac{(-2)^4}{4}\bigg] = \dfrac{1}{3} \bigg[ \dfrac{1}{4} - \dfrac{16}{4}\bigg] = \dfrac{1}{3} \dfrac{-15}{4} = -\dfrac{5}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.