Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 313: 56

Answer

$\dfrac{4}{15}$

Work Step by Step

The function $\sqrt x (1 - x)$ intersects the graph of $y=0$ (the x axis) when $x=0$ and when $x=1$, therefore we take the integral from $0$ to $1$. Also, from the graph we can see that the area bounded by the graphs of the equations goes from $x=0$ to $x=1$ $\displaystyle \int_{0}^{1} [\sqrt x (1 - x)]dx = \displaystyle \int_{0}^{1} [x^{\frac{1}{2}} (1 - x)]dx = \displaystyle \int_{0}^{1} [x^{\frac{1}{2}} - x^{\frac{1}{2}}(x)]dx \\ = \displaystyle \int_{0}^{1} [x^{1/2} - x^{\frac{1}{2}+1}]dx = \displaystyle \int_{0}^{1} [x^{\frac{1}{2}} - x^{\frac{3}{2}}]dx = \bigg[ \dfrac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} - \dfrac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg] \Bigg \rvert_{0}^{1}\\ = \bigg[ \dfrac{x^{\frac{3}{2}}}{\frac{3}{2}} - \dfrac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg] \Bigg \rvert_{0}^{1} = \bigg[ \dfrac{2x^{\frac{3}{2}}}{3} - \dfrac{2x^{\frac{5}{2}}}{5}\bigg] \Bigg \rvert_{0}^{1} \\ = \bigg[ \dfrac{2(1)^{\frac{3}{2}}}{3} - \dfrac{2(1)^{\frac{5}{2}}}{5}\bigg] - \bigg[ \dfrac{2(0)^{\frac{3}{2}}}{3} - \dfrac{2(0)^{\frac{5}{2}}}{5}\bigg] = \bigg[ \dfrac{2(1)}{3} - \dfrac{2(1)}{5}\bigg] - \bigg[ 0 - 0\bigg] \\ = \dfrac{2}{3} - \dfrac{2}{5} - 0 = \dfrac{2}{3} - \dfrac{2}{5} = \dfrac{4}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.