Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 78

Answer

$\displaystyle \int_{3}^{6}\dfrac{x}{3\sqrt{x^2-8}}dx = \dfrac{2\sqrt{7} - 1}{3} \approx 1.4305$

Work Step by Step

To evaluate the integral $\displaystyle \int_{3}^{6}\dfrac{x}{3\sqrt{x^2-8}}dx$, let $u = x^2-8$. Then we obtain $u = x^2-8 \longrightarrow du = 2xdx \longrightarrow \dfrac{du}{2} = xdx$ Before substituting, determine the new upper and lower limits of integration Lower limit: When $x = 3$, $u = 3^2-8 = 1$ Upper limit: When $x = 6$, $u = 6^2-8 = 28$ $\displaystyle \int_{3}^{6}\dfrac{x}{3\sqrt{x^2-8}}dx = \displaystyle \int_{1}^{28}\dfrac{1}{3\sqrt{x^2-8}}(xdx) = \displaystyle \dfrac{1}{3}\int_{1}^{28}\dfrac{1}{\sqrt{u}}\dfrac{du}{2} = \displaystyle \dfrac{1}{3}\times\dfrac{1}{2}\int_{1}^{28}\dfrac{1}{u^{1/2}}du = \displaystyle \dfrac{1}{6}\int_{1}^{28}u^{-1/2}du = \dfrac{1}{6} \dfrac{u^{1/2}}{\frac{1}{2}} \Bigg\vert_{1}^{28} = \dfrac{2}{6} u^{1/2}\Bigg\vert_{1}^{28} = \dfrac{1}{3}\bigg[ \sqrt{28} - \sqrt{1} \bigg] = \dfrac{1}{3}\bigg[ 2\sqrt{7} - 1 \bigg] = \dfrac{2\sqrt{7} - 1}{3} \approx 1.4305$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.